Proof that a nonzero rational power of *e* is irrational

Definition: A number is *irrational* iff no positive (integral) multiple of it is an integer.

Theorem: If p is a positive integer, then e^p is irrational.

Proof: Suppose *m* and *n* are positive integers, and let

$$I_n = 1/n! \int_0^\infty [x(x-p)]^n e^{-x} dx$$
 and $J_n = 1/n! \int_0^\infty [x(x+p)]^n e^{-x} dx$

Then I_n and J_n are integers because $(x \pm p)^n$ are polynomials with integer coefficients,

$$[x(x \pm p)]^n = x^n (x \pm p)^n$$
, and $\int_0^\infty x^k e^{-x} dx = k!$ when k is a nonnegative integer

Now consider the positive integral multiple of e^p , me^p , and multiply it by the integer I_n :

$$me^{p} I_{n} = \frac{me^{p}}{n!} \int_{0}^{p} [x(x-p)]^{n} e^{-x} dx + \frac{m}{n!} \int_{p}^{\infty} [x(x-p)]^{n} e^{-(x-p)} dx$$
$$= \frac{me^{p}}{n!} \int_{0}^{p} [x(x-p)]^{n} e^{-x} dx + \frac{m}{n!} \int_{0}^{\infty} [(u+p)u]^{n} e^{-u} du \quad \text{(where } u = x-p\text{)}$$
$$= \frac{me^{p}}{n!} \int_{0}^{p} [x(x-p)]^{n} e^{-x} dx + mJ_{n}$$

On
$$[0,p]$$
: $|x(x-p)| \le \frac{p^2}{4}$ and $0 < e^{-x} \le 1$, so $\left|\frac{me^p}{n!}\int_0^p [x(x-p)]^n e^{-x} dx\right| \le \frac{me^p p^{2n}}{4^n n!}$

If *n* is chosen so that $n! > me^p \left(\frac{p^2}{4}\right)^n$ (possible since factorials grow faster than exponentials) then $\left|\frac{me^p}{n!}\int_0^p [x(x-p)]^n e^{-x} dx\right| < 1$. Also, $\int_0^p [x(x-p)]^n e^{-x} dx \neq 0$ because $[x(x-p)]^n e^{-x}$ does not change sign in (0, p). Thus $me^p I_n = \varepsilon_n + mJ_n$ where $0 < |\varepsilon_n| < 1$ if $n! > me^p \left(\frac{p^2}{4}\right)^n$, and is not an integer in this case. Therefore me^p must not be an integer. QED

Corollary: If p is a positive integer and q is a nonzero integer, then $e^{p/q}$ is irrational.

Proof: If $e^{p/q}$ were rational, then $(e^{p/q})^q$ would be rational, contradicting the theorem.