Proof that *e* is not a quadratic number

Definition: A number is *quadratic* iff it is the root of a quadratic equation with integer coefficients.

Proof: If e were a quadratic number, then there would be integers m_1 and m_2 with $m_2 \neq 0$ such that $m_1e + m_2e^2$ is an integer.

Thus suppose m_1 and m_2 are integers with $m_2 \neq 0$. Let *n* be an integer with certain conditions to be determined, and let

$$I_n = \int_0^\infty [x(x-1)(x-2)]^n e^{-x} dx, \qquad J_n = \int_0^\infty [x(x+1)(x-1)]^n e^{-x} dx,$$
$$K_n = \int_0^\infty [x(x+1)(x+2)]^n e^{-x} dx$$

Then I_n , J_n and K_n are integers because $[x(x-1)(x-2)]^n$, $[x(x+1)(x-1)]^n$ and $[x(x+1)(x+2)]^n$ are polynomials with integer coefficients, and $\int_0^\infty x^k e^{-x} dx = k!$ when k is a nonnegative integer.

Now consider $m_1 e + m_2 e^2$ and multiply it by the integer I_n :

$$(m_{1}e + m_{2}e^{2})I_{n} =$$

$$m_{1}e\int_{0}^{1}[x(x-1)(x-2)]^{n}e^{-x}dx + m_{2}e^{2}\int_{0}^{2}[x(x-1)(x-2)]^{n}e^{-(x-1)}dx +$$

$$m_{1}\int_{1}^{\infty}[x(x-1)(x-2)]^{n}e^{-(x-1)}dx + m_{2}\int_{2}^{\infty}[x(x-1)(x-2)]^{n}e^{-(x-2)}dx$$

$$= (m_1 e + m_2 e^2)A_n + m_2 e^2 B_n +$$

$$m_1 \int_0^\infty [(u+1)u(u-1)]^n e^{-u} du + m_2 \int_0^\infty [(v+2)(v+1)v]^n e^v dv$$

$$= (m_1 e + m_2 e^2)A_n + m_2 e^2 B_n + m_1 J_n + m_2 K_n$$

where u = x - 1 and v = x - 2, and A_n and B_n are as follows:

$$A_n = \int_0^1 [x(x-1)(x-2)]^n e^{-x} dx, \quad B_n = \int_1^2 [x(x-1)(x-2)]^n e^{-x} dx$$

Now on (0, 1), x(x - 1)(x - 2) is positive, so A_n is positive. On the other hand, on (1, 2), x(x - 1)(x - 2) is negative, so B_n would be negative if *n* is odd, but positive if *n* is even. Thus, if $m_1e + m_2e^2$ and m_2e^2 have the

same sign let *n* be even, otherwise let *n* be odd. Then $(m_1e + m_2e^2)A_n + m_2e^2B_n$ is nonzero. Let us label this as ε_n .

Furthermore, $|x(x-1)(x-2)| \leq \frac{2}{3\sqrt{3}} < 0.4$ on [0, 2], so $|A_n| < (0.4)^n$ and $|B_n| < (0.4)^n$, so $0 < |\varepsilon_n| < |m_1e + 2m_2e^2|(0.4)^n$. Since $(0.4)^n \to 0$ as $n \to \infty$, we can choose *n* large enough so $|\varepsilon_n| < 1$. Thus $(m_1e + m_2e^2)I_n = \varepsilon_n + m_1J_n + m_2K_n$ where m_1J_n and m_2K_n are integers, but ε_n is nonzero and less than 1 in absolute value when *n* is chosen appropriately, so $(m_1e + m_2e^2)I_n$ is not an integer, and therefore $m_1e + m_2e^2$ is not an integer. QED

Test your understanding:

- 1. Prove by mathematical induction and integration by parts that $\int_0^\infty x^k e^{-x} dx = k!$ when k is a positive integer.
- 2. Prove that $|x(x-1)(x-2)| \le \frac{2}{3\sqrt{3}}$ when $0 \le x \le 2$
- 3. Suppose we remove the restriction that *n* be even or odd depending on the signs of if $m_1e + m_2e^2$ and m_2e^2 . In that case, under what conditions might $\varepsilon_n=0$?