Proof that *e* **is irrational**

Needed facts about *e* (what definition should we use? Perhaps $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$):

$$e > 1$$
, $e^{x+y} = e^x e^y$, $\frac{de^x}{dx} = e^x$

Definition: A number is *irrational* iff no positive (integral) multiple of it is an integer.

Proof: Suppose *m* and *n* are positive integers, and let

$$I_n = \int_0^\infty [x(x-1)]^n e^{-x} dx \text{ and } J_n = \int_0^\infty [x(x+1)]^n e^{-x} dx$$

Then I_n and J_n are integers because $[x(x \pm 1)]^n$ are polynomials with integer coefficients, and $\int_0^\infty x^k e^{-x} dx = k!$ when k is a nonnegative integer.

Now consider the positive integral multiple of
$$e$$
, me , and multiply it by the integer I_n :

$$me I_n = me \int_0^1 [x(x-1)]^n e^{-x} dx + m \int_1^\infty [x(x-1)]^n e^{-(x-1)} dx$$
$$= me \int_0^1 [x(x-1)]^n e^{-x} dx + m \int_0^\infty [(u+1)u]^n e^{-u} du \quad \text{(where } u = x-1\text{)}$$
$$= me \int_0^1 [x(x-1)]^n e^{-x} dx + m J_n$$

On [0,1]:
$$|x(x-1)| \le \frac{1}{4}$$
 and $0 < e^{-x} \le 1$, so $\left| me \int_0^1 [x(x-1)]^n e^{-x} dx \right| \le \frac{me}{4^n}$

If
$$n > \log_4(me)$$
 then $\left| me \int_0^1 [x(x-1)]^n e^{-x} dx \right| < 1$

Also
$$\int_0^1 [x(x-1)]^n e^{-x} dx \neq 0$$
 because $[x(x-1)]^n e^{-x}$ does not change sign in (0, 1).

Thus $meI_n = \varepsilon_n + mJ_n$ where $0 < |\varepsilon_n| < 1$ if $n > \log_4(me)$, and is not an integer in this case .

Therefore me must not be an integer. QED